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Crystallographic maths
Spoiler: It never happens in Cartesian frames

I Vector calculus in a rectilinear but not necessary orthonormal
or even orthogonal reference frame.

I Need to define basic vector operation in non-Cartesian frames:

I Dot product

I Cross product

I Length of a vector

I Angle between two vectors



Basis vectors and unit cells

I A lattice is defined as a set of points
which is created by all integer linear
combination of three basis vectors a, b, c.

t = ua + vb + wc

where u, v , w are arbitrary integers.

I A crystal structure is defined as a regular
arrangement of atoms decorating a given
lattice.



A vector is defined using a crystal’s basis vectors

v = v1e1 + v2e2 + v3e3 =
3∑

i=1

v iei = viei



Dot product in a crystal frame
I Dot product definition:

p · q = |p||q| cos θ

If same vector p = pxa + pyb + pzc = piai

then |p| =
√
p · p =

√
piai · pjaj =

√
pi (ai · aj) pj

I If p is defined in a non-Orthogonal (or any) crystal frame:

|p| =
√
pi gij pj

gij ≡ ai · aj = |ai||aj| cos θij

I gij is known as the direct metric tensor



Finally...

I The dot product between any two arbitrary vectors:

p · q =
3∑

i ,j=1

(piai) · (qjaj)

=
3∑

i ,j=1

pi (ai · aj) qj

=
3∑

i ,j=1

pigijqj

= pigijqj



Direct Metric Tensor

I 3 × 3 matrix to define how distances are measured

I defined by the six lattice parameters:

g =

a · a a · b a · c
b · a b · b b · c
c · a c · b c · c

 =

 a2 ab cos γ ac cosβ
ba cos γ b2 bc cosα
ca cosβ cb cosα c2

 (1)

I Each crystallographic reference frame has a unique one



Example
Find angle θ between [100] and [111] directions in GaN 2H

For GaN : a = 3.19Å, c = 5.19Å.

Let p = [100], q = [111], then gij =

[
a2 − a2

2
0

− a2

2
a2 0

0 0 c2

]
Using the dot product cos θ = p·q

|p||q| :

where p · q = pigijqj = [ 1 0 0 ]

[
a2 − a2

2
0

− a2

2
a2 0

0 0 c2

] [
1
1
1

]
= a2

2 ,

|p| =
√
pi gij pj =

√
a2 = a, |q| =

√
qi gij qj =

√
a2 + c2

∴ cos θ =
a2

2a
√
a2 + c2

=
a

2
√
a2 + c2

For lattice parameters given: θ = 74.8◦



Directions and distance between points

I Square brackets [px py pz ].

I Distance between points P (OP = p) and Q (OQ = q).

D2 = (q− p)i gij (q− p)j



Lattice planes and Miller indices

I Describe lattice plane with a series of 3 integers written in
round brackets (h k l)

I if the plane goes through
origin displace it parallel
to itself

I determine the intercepts
with the 3 basis vectors

I invert the intercept
(∞ → 0)

I reduce to smallest
integers



Question to ponder about

I the Miller indices (hkl) form a triplet of integer numbers that
fully characterize a plane.

I But can we interpret the Miller indices as components of a
vector?



Family of planes

I all crystal planes equivalent to (hkl) form the family of planes
{hkl}.

I the planes in a family can be obtained by permutation of their
Miller indices (including negatives).

I the number of planes belonging to a family (multiplicity) is
determined by the crystal symmetry

I the concept of family of planes is important when describing
the external shape of a crystal – a form is a group of crystal
faces that belong to the same family.



Family of directions

I all crystal directions equivalent to [uvw ] form the family of
directions 〈uvw〉.

I the directions in a family can be obtained by permutation of
their indices (including negatives).

I the number of directions belonging to a family (multiplicity) is
determined by the crystal symmetry



Miller-Bravais indices

I the hexagonal crystal is more
conveniently described by 4 basis
vectors

I 3 of which are co-planar and not
linearly independent

I Miller-Bravais index (hkil) where
third index i = −(h + k) can be
omitted (hk.l)



Miller-Bravais indices
good for families of planes

I the third index makes it easy to
determine the equivalent planes

I by permuting the first 3
Miller-Bravais indices (including
negative values)

I {112̄0} = {(112̄0), (12̄10), (2̄110),
(1̄1̄20), (1̄21̄0), (21̄1̄0)}

I as compared to Miller indices:
{110} = {(110), (12̄0), (2̄10),

(1̄1̄0), (1̄20), (21̄0)}



Miller-Bravais indices
awkward for families of directions

I directions in Miller-Bravais indices
are [uvtw]

I where t = −(u + v) is the index
corresponding to a3

I where a3 = −(a1 + a2)

I So then:

ua1+va2+ta3+wc = Ua1+V a2+W c

I Such that:

U = 2u + v

V = 2v + u

W = w



Example
Miller direction [100] in Miller-Bravais

Going the other way we have for [UVW]≡[100]:

u =
1

3
(2U − V ) =

2

3
, v =

1

3
(2V − U) = −1

3
,

t = −(u + v) = −1

3
, w = W = 0

Thus we have the direction written in Miller-Bravais form to be:

[100] ≡ [
2

3

1̄

3

1̄

3
0]

Simplifying to:
[100] ≡ [21̄1̄0]



Distances versus frequency
A dual view of the world

Real (Direct) space

I distances between trees:
d = 1 〈Length〉

Reciprocal space

I trees per unit 〈Length〉 :
r = 1 〈1/Length〉



Distances versus frequency
A dual view of the world

Length′ = 2 Length

Real (Direct) space

I distances between trees:
d = 1/2 〈Length′〉

I d is contravariant quantity

Reciprocal space

I trees per unit 〈Length′〉 :
r = 2 〈1/Length′〉

I r is covariant quantity



A dual view of the world

I Real space and reciprocal space are complementary ways of
looking at the crystal lattice.

I They are called spaces because they are described by different
vector spaces

I ... even if these spaces are not spatially different

I Why do we need multiple views of the crystal ?

I Remember the pondering question.

I The reciprocal space is defined as the coordinate system in
which the Miller indices of a plane are the components of the
normal to that plane.



Reciprocal basis vectors

For any crystal structure the reciprocal lattice vector g, with
components (h, k, l) is by definition perpendicular to the plane
with Miller indices (hkl).

ghkl = hb1
∗ + kb2

∗ + lb3
∗

where

b∗1 =
a2 × a3

V

b∗2 =
a3 × a1

V

b∗3 =
a1 × a2

V



Reciprocal space vector length

I The other awesome property of the reciprocal space vector
ghkl is that its length is equal to the inverse of the distance
between the (hkl) planes:

|ghkl | =
1

dhkl

I But the reciprocal space is just a different basis vector and we
know we can use the metric tensor formalism to compute
vector lengths.



Reciprocal metric tensor

We’ve done this before:

|g| =
√
g · g =

√
(gia∗i ) · (gja∗j) =

√
(gi (a∗i · a∗j)gj =

√
gig∗ij gj

where we call g∗ij the reciprocal metric tensor:

g∗ =

a∗ · a∗ a∗ · b∗ a∗ · c∗
b∗ · a∗ b∗ · b∗ b∗ · c∗
c∗ · a∗ c∗ · b∗ c∗ · c∗


=

 a∗2 a∗b∗ cos γ∗ a∗c∗ cosβ∗

b∗a∗ cos γ∗ b∗2 b∗c∗ cosα∗

c∗a∗ cosβ∗ c∗b∗ cosα∗ c∗2





Reciprocal metric tensor
Nevermind the reciprocal basis

Quite conveniently we don’t really have to do any reciprocal space
maths because the matrices representing the direct and reciprocal
space are each other’s inverses:

g∗ij = (gij)
−1

For instance,

g∗hexagonal =


4
3a2

2
3a2

0

2
3a2

4
3a2

0

0 0 1
c2





Example
Expressions for the length |ghkl | = 1/dhkl

System |ghkl | expression

Cubic g c =
1

a

{
h2 + k2 + l2

}1/2

Tetragonal g t =

{
1

a2
(h2 + k2) +

1

c2
l2
}1/2

Hexagonal gh =

{
4

3a2
(h2 + k2 + hk) +

1

c2
l2
}1/2



Angle between reciprocal vectors
Or between planes normals

As in real space the angle α between reciprocal vectors g and h:

α = cos−1
(

g · h
|g| |h|

)
= cos−1

 gig
∗
ijhj√

gig∗ij gj
√

hig∗ijhj


For gh1k1l1 and hh2k2l2 in a hexagonal system:

α =

4

3a2

(
h1k1 + k1k2 +

1

2
(h1k1 + k1h2)

)
+

1

c2
l1l2

gh1k1l1hh2k2l2



Reciprocal space vector in real space
And vice versa

I A vector exists independently of the reference frame.

I So for a vector p defined by components pi in the direct
lattice frame with basis vectors ai : p = piai ,

I we can find components p∗j in the reciprocal space with basis
vectors a∗j :

p = piai = p∗j a
∗
j

So then:

p∗m = pigim

And:
pi = p∗mg

∗
mi
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