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e The thermodynamic Ising model has been successfully studied with the Renormalization
group (RG) [1-4].

e Numerical methods for updating coupling constants and describing the thermodynamic
model using rescaled representations of itself are presented by Swendsen [3, 4].

e Our aim is to investigate the rescaling behaviour of the rates assigned to events in the
kinetic Ising model evolved under Glauber dynamics [5, 6].

e The dynamical scaling behaviour of the Ising model is considered hard to calculate accu-
rately.

e A method for evaluating the rescaled kinetic rates would enable simulation on greater
length and time scales.

Thermodynamic Ising Model

e The two dimensional thermodynamic Ising model is a lattice occupied by |1) and ||) spins
denoted by the set {0, = +1} [2,7].

e The system undergoes an order-disorder phase transition at a critical temperature 7. and
Is scale invariant at this point.

e An initial microstate is placed in contact with a thermal bath at temperature 7' and evolved
through Monte Carlo simulation methods [8—12].

e Thermodynamic quantities are sampled until their mean converges.
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Figure 1: (a)-(c) Show plots of the expectation values for magnetization, magnetic sus-
ceptibility and energy per site on L x L lattices. Each data point is averaged over 2 X 10%
Monte Carlo steps per site using the Metropolis method described in [8]. The peak in the
susceptibility plot occurs at the second order phase transition. (d)-(f) Show snapshots of
microststates (taken after 2 x 10° Monte Carlo steps per site) representing the Ising model
in equilibrium with baths of temperatures (d) 0.957,, (e) 7. and (f) 1.057.
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Renormalization Group - Thermodynamic

e Block spin transformations can be used in order to renormalize spin models such as the
Ising model [1, 2].

e The real space Ry transformations can be performed by dividing the model into blocks
containing b x b spins and replacing these with a single spin matching the block majority.
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Figure 3: Shows the two dimensional Ising model at T, after (a) O, (b) 1 & (c) 2 RG trans-
formations with a block size of b = 2. These transformations show the system to be scale
iInvariant at criticality.

e The eigenvalues of the renormalization transformation can be evaluated by Monte Carlo
sampling [3, 4].
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Kinetic Ising Model

e The zero temperature Glauber dynamics of the Ising model involve quenching the model
to zero temperature from above criticality [5, 6].

e In order to evolve the model, spin flip events are categorised by their associated energy
change.

e Allowed events are flips that decrease or do not change the energy of the system.

e Events are then selected proportional to the rate at which they occur as a fraction of all
potential events. This can be sampled by Kinetic Monte Carlo [13].

e As the model quenches from 7' = oo to T
reaching a stable configuration [6].

0 it exhibits a coarsening mosaic before

e A stable configuration is one with no possible events, i.e. a homogeneous system or
spanning stripes of at least 2 sites in width [6].
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(a) Early microstate - 1 x 10° events (b) Mid microstate - 1.5 x 10° events (c) Late microstate - 2.5 x 10° events

Figure 2: Shows snapshots of the zero temperature coarsening process after (a) 1 x 10, (b)
1.5 x 10° & (c) 2.5 x 10% events. The simulations are initialized with a random initial microstate
corresponding to a model at 7" = oco. The system finally evolves to homogeneity or stable
stripes.
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Renormalization Group - Kinetic

e The scaling behaviour of the rates upon RG transformations in the kinetic Ising model is
currently unknown.

e Obtaining rescaled rates would allow larger scale simulations to be represented in the
same parameter space.

e Rescaled rates can be obtained by evolving the original model and monitoring changes on
the rescaled model.

e Observing events on the rescaled model allows them to be categorised and time averaged
In order to obtain their rate.

e The same methods for evolving the original model could then be used with these renor-
malized rates.
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Figure 4: Shows snapshots of the zero temperature coarsening process at 1.5 x 107 events
after (a) O, (b) 1 & (c) 2 RG transformations.
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